On graded WAG2-absorbing submodule

نویسندگان

چکیده

Let $G$ be a group with identity $e$. $R$ $G$-graded commutative ring and $M$ graded $R$-module. In this paper, we introduce the concept of $WAG2$-absorbing submodule. A number results concerning these classes submodules their homogeneous components are given.
 $N=\bigoplus _{h\in G}N_{h}$ submodule $h\in G.$ We say that $N_{h}$ is $h$-$WAG2$-absorbing $R_{e}$-module $M_{h}$ if $N_{h}\neq M_{h}$; whenever $r_{e},s_{e}\in R_{e}$ $m_{h}\in M_{h}$ $0\neq r_{e}s_{e}m_{h}\in N_{h}$, then either $%r_{e}^{i}m_{h}\in N_{h}$ or $s_{e}^{j}m_{h}\in $%(r_{e}s_{e})^{k}\in (N_{h}:_{R_{e}}M_{h})$ for some $i,$ $j,$ $k$ $\in\mathbb{N}.$ $N$ {a }$WAG2${-absorbing }$M$ $N\neq M$; $r_{g},s_{h}\in h(R)$ $%m_{\lambda }\in h(M)$ r_{g}s_{h}m_{\lambda N$, $r_{g}^{i}m_{\lambda N$ $s_{h}^{j}m_{\lambda $%(r_{g}s_{h})^{k}\in (N:_{R}M)$ $\in \mathbb{N}.$ particular, following assertions have been proved:
 ring, cyclic $R$-module $%Gr((0:_{R}M))=0$ $M.$ If $WAG2$% {-absorbing }$M,$ then\linebreak $Gr((N:_{R}M))$ -absorbing ideal (Theorem 4).Let $R_{1}$ $R_{2}$ rings. $R=R_{1}\bigoplus R_{2}$ $M=M_{1}\bigoplus M_{2}$ $N_{1},$ $N_{2}$ proper $M_{1}$, $M_{2}$ respectively. $N=N_{1}\bigoplus N_{2}$ $M,$ $N_{1}$ weakly primary $R_{1}$-module $M_{1},$ $R_{2}$-module $M_{2},$ Moreover, $N_{2}\neq 0$ $(N_{1}\neq 0),$ weak $M_{1}$ $(N_{2}$ $M_{2})$ 7).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On special submodule of modules

‎Let $R$ be a domain with quotiont field $K$‎, ‎and‎ ‎let $N$ be a submodule of an $R$-module $M$‎. ‎We say that $N$ is‎ ‎powerful (strongly primary) if $x,yin K$ and‎ ‎$xyMsubseteq N$‎, ‎then $xin R$ or $yin R$ ($xMsubseteq N$‎ ‎or $y^nMsubseteq N$ for some $ngeq1$)‎. ‎We show that a submodule‎ ‎with either of these properties is comparable to every prime‎ ‎submodule of $M$‎, ‎also we show tha...

متن کامل

On Duality of Submodule Lattices 1

An elementary proof is given for Hutchinson’s duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.

متن کامل

Submodule Algebras

The complement operation on modules has not been argued so far as we know. We observe that it plays an important role in software maintenance, as well as join and meet operations. A de nition of a module and operations on them is given in category theoretic terms; we adopt well-known characterization of complement as a left adjoint to join. The de nition is rst given locally and then extended t...

متن کامل

Submodule Construction Using Derivatives

Top-down design methodology is one of the widely used approaches to the design of complex concurrent systems. In this approach, the speciication of a system is decomposed into a set of submodules whose concurrent behavior is equivalent to that of the system speciication. The following problem is of particular importance when using this methodology: given the speciication of a system and some of...

متن کامل

On the 2-absorbing Submodules

Let $R$ be a commutative ring and $M$ be an $R$-module. In this paper, we investigate some properties of 2-absorbing submodules of $M$. It is shown that $N$ is a 2-absorbing submodule of $M$ if and only if whenever $IJLsubseteq N$ for some ideals $I,J$ of R and a submodule $L$ of $M$, then $ILsubseteq N$ or $JLsubseteq N$ or $IJsubseteq N:_RM$. Also, if $N$ is a 2-absorbing submodule of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Matemati?nì studìï

سال: 2022

ISSN: ['2411-0620', '1027-4634']

DOI: https://doi.org/10.30970/ms.58.1.13-19